Tailoring Au-core Pd-shell Pt-cluster nanoparticles for enhanced electrocatalytic activity†

نویسندگان

  • Ping-Ping Fang
  • Sai Duan
  • Xiao-Dong Lin
  • Jason R. Anema
  • Jian-Feng Li
  • Olivier Buriez
  • Yong Ding
  • Feng-Ru Fan
  • De-Yin Wu
  • Bin Ren
  • Zhong Lin Wang
  • Christian Amatore
  • Zhong-Qun Tian
چکیده

We have rationally synthesized and optimized catalytic nanoparticles consisting of a gold core, covered by a palladium shell, onto which platinum clusters are deposited (Au@Pd@Pt NPs). The amount of Pt and Pd used is extremely small, yet they show unusually high activity for electrooxidation of formic acid. The optimized structure has only 2 atomic layers of Pd and a half-monolayer equivalent of Pt (qPt z 0.5) but a further increase in the loading of Pd or Pt will actually reduce catalytic activity, inferring that a synergistic effect exists between the three different nanostructure components (sphere, shell and islands). A combined electrochemical, surface-enhanced Raman scattering (SERS) and density functional theory (DFT) study of formic acid and CO oxidation reveals that our core–shell–cluster trimetallic nanostructure has some unique electronic and morphological properties, and that it could be the first in a new family of nanocatalysts possessing unusually high chemical reactivity. Our results are immediately applicable to the design of catalysts for direct formic acid fuel cells (DFAFCs).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ni@Pt core-shell nanoparticles as an improved electrocatalyst for ethanol electrooxidation in alkaline media

Core-shell nanostructures are emerging as more important materials than alloy nanostructures and have much more interesting potential applications in various fields. In this work, we demonstrated the fast and facile synthesis of core-shell nanoparticles consisting of Pt thin layer as the shell and Ni nanoparticles as the cores. The described method herein is suitable for large-scale and low-cos...

متن کامل

Unusual Activity Trend for CO Oxidation on Pd(x)Au(140-x)@Pt Core@Shell Nanoparticle Electrocatalysts.

A theoretical and experimental study of the electrocatalytic oxidation of CO on PdxAu140-x@Pt dendrimer-encapsulated nanoparticle (DEN) catalysts is presented. These nanoparticles are comprised of a core having an average of 140 atoms and a Pt monolayer shell. The CO oxidation activity trend exhibits an unusual koppa shape as the number of Pd atoms in the core is varied from 0 to 140. Calculati...

متن کامل

Cage-bell Pt-Pd nanostructures with enhanced catalytic properties and superior methanol tolerance for oxygen reduction reaction.

Precisely tailoring the structure and fully making use of the components of nanoparticles are effective to enhance their catalytic performance for a given reaction. We herein demonstrate the design of cage-bell structured Pt-Pd nanoparticles, where a Pd shell is deliberately selected to enhance the catalytic property and methanol tolerance of Pt for oxygen reduction reaction. This strategy star...

متن کامل

Electrocatalytic properties of Au@Pt nanoparticles: effects of Pt shell packing density and Au core size.

A detailed study of electrocatalytic properties of Au@Pt nanoparticles (NPs) as functions of Pt shell packing density and Au core size in terms of CO/methanol oxidation and oxygen reduction reactions is reported here. While most samples studied showed inferior catalytic activities to those of the commercial Pt black that fall reasonably well in a d-band-center up-shift (i.e., stronger surface b...

متن کامل

Ethanol electrooxidation on the Co@Pt core-shell nanoparticles modified carbon-ceramic electrode in acidic and alkaline media

In this study, the electrocatalytic activity of the Co@Pt core-shell nanoparticles toward the ethanol oxidation reaction has been investigated by cyclic voltammetry and chronoamperometry in acidic and alkaline media in details. The physicochemical data obtained in alkaline solution are compared to those in acidic solution. The obtained results demonstrate that while in the both media Co@Pt core...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011